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Preface 

Artificial Intelligence known as AI was officially founded at a conference on 
Dartmouth College’s campus in 1956. The conference included John McCarthy, 
Marvin Minsky, Allen Newell, Arthur Samuel and Herbert Simon, who became the 
leaders of AI research for many decades. 

AI spread broadly since 1960 and was heavily funded in different countries. During 
its evolving, AI showed in many forms, some were linked to each other and some 
were independent branches of it. In the 1980s one of AI’s first successful forms 
emerged, expert systems, which are computer systems that emulate the decision 
making ability of a human expert to solve complex problems for example. 

In the 1990s and early 21st century AI reached a great level of success due to several 
factors: the increasing computational power of computers, a greater emphasis on 
solving specific sub problems, the creation of new ties between AI and other fields 
working on similar problems and a new commitment by researchers to solid 
mathematical methods and rigorous scientific standards. 

Throughout its success AI fulfilled a lot of achievements, such as: deep blue, the 
chess playing computer which beaten Garry Kasparov, a reigning world chess 
champion. IBM’s question answering system, Watson, defeated two of the best 
jeopardy champions by a significant margin in a Jeopardy! quiz show. A 3D body-
motion interface provider became available for the Xbox 360 and the Xbox One, the 
Kinect. A lot more became available. 

AI provided a lot of products and creations that implemented reasoning, problem 
solving capability, knowledge, planning, learning, communication, perception and 
more. 

One of AI’s applications was Artificial Neural Networks which is a simulation of a 
biological humanoid neural network or in other words a simulation of a humanoid 
brain, so it’s able to learn, to solve mathematical or complex problems by itself 
starting from simpler ones and to make use the capabilities of its artificial 
components to the maximum. 

What are the advantages and disadvantages of an artificial neural network?? 

Could we keep track on its every action and keep it under control?? 

Before answering these questions let’s take a deep look into artificial neural 
networks and their specifications. 
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Chapter 1 

Introduction and history 

1.1 A BRIEF HISTORY 

Instead of a long historical talk, I decided to build a timeline with multiple dates of 
interest containing brief information about important achievements or events that 
happened in them. 

It started in the early 1940s and went on as the following: 

 1943: models of neurologial networks were intrduced by Warren 

McCulloch and Walter Pitts, these networks were able to calculate almost 
any logic or arithmetic function. The first computer precursors (“electronic 
brains”) were developped. 

 1947: McCulloch and Pitts indicated a practical field of application which 

was not mentioned in their work from 1943 (the recognition of special 
patterns). 

 1949: the classical Hebbian rule was formulated by Donald O. Hebb which 

in its generalized form represents nearly all neural learning procedures. 

 1950: the neuropsychologist Karl Lashley defended the thesis that brain 

information storage is realized as a distributed system (the extent of a 
destroyed nerve tissue is affected and not its location). 

 1951: from this year and so on, neural networks field reached its golden age. 

Marvin Minsky developed the neurocomputer Snark which was capable of 
calculating and adjusting its weights automatically. 

 1956: some well-known scientists and ambitious students met at the 

Dartmouth Summer Research Project and discussed, if right to say, how to 
simulate a brain and the differences between top-down and bottom-up 
research. 
Supporters of neural networks wanted to achieve a simulation of the smallest 
part of a biological neural system – the neurons. 

 1957-1958: the neurocomputer Mark I perceptron was developed by Frank 

Rosenblatt, Charles Wightman and their coworkers at the MIT. 
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 1959: Rosenblatt did more improvements on his perceptron and described 

different versions of it. 

 1960: Bernard Widrow (known as the inventor of modern microprocessors) 

and Marcian E. Hoff (co-founder of Intel Corporation, at that time a PhD 
student of Widrow) introduced the ADALINE (ADAptive LInear NEuron) a 
fast and precise adaptive system being the first widely commercially used 
neural network. It is trained by the Widrow-Hoff rule (the delta rule). 

 1969: funding researches in the neural networks field has almost stopped for 

about 15 years, which led to silent researching and development. 

 1974: for his dissertation in Harvard, Paul Werbos developed a learning 

procedure called Backpropagation of error but it was not until one decade 
later that this procedure reached today’s importance. 

 1976-1980: models of adaptive resonance theory (ART) saw the light. 

 1982: the self-organizing feature maps (SOM) also known as Kohonen maps 

were developed by Teuvo Kohonen. 
John Hopfield invented the Hopfield network. 

 1983: the neural model of the Neocognitron was introduced by Fukushima, 

Miyake and Ito, it couldrecognize handwritten characters. 

 1985: Hopfield published an article describing a way of finding acceptable 

solutions for the Travelling Salesman problem by using Hopfield net. 

 1986: the backpropagation of error learning as a generalization of the delta 

rule was seperatley developed, non-linear-separable problems could be 
solved by multi layer perceptrons. 
At the same time a “fatigue” spread in the field of AI, caused by a series of 
failures and unfullfilled hopes. 

 From this date on, the development of the field has almost been 

explosive and can no longer be itemized. 
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1.2 AN INTRODUCTION TO NEURAL NETWORKS 

If we want to solve a problem using a machine, we could simply formulate it as an 
algorithm, but there are many problems that cannot be formulated this way, still, 
our human brain is able to solve them, why is that so? 

It’s because we, unlike machines, learn. 

Computers have some processing units and memory which makes them able of 
doing complex numerical calculations in a very short time, but these components 
are not adaptive. 

Theoretically, if we compare a human brain to a computer, we will see that a 
computer should be more powerful than our brain: it comprises 109 transistors with 
a switching time of 10-9 while the brain contains 1011 neurons with a switching time 
of about 10-8. 

A simple comparison might explain better: 

 BRAIN COMPUTER  

No. of processing units  ≈ 1011 ≈ 109 

Type of processing units Neurons Transistors 

Type of calculation Massively parallel Usually serial 

Data storage Associative Address-based 

Switching time ≈ 10-8 s ≈ 10-9 s 

Possible switching operations ≈ 1013 s-1 ≈ 1018 s-1 

Actual switching operations ≈ 1012 s-1 ≈ 1010 s-1 

Table 1: a simple comparison between a human brain and a computer. 

The brain, being parallel, is working to its theoretical maximum, from which the 
computer is orders of magnitude away. A computer is also static – the brain, as a 
biological neural network can reorganize itself during its “lifespan” and therefore is 
able to learn, to compensate errors and so forth. 

The study of artificial neural networks is motivated by their similarity to successfully 
working biological systems, which consist of simple but numerous nerve cells that 
work massively in parallel and have the capability to learn (which is one of its most 
significant aspects). 

There is no need to explicitly program a neural network. For instance it can learn 
from training samples or by means of encouragement (reinforcement learning.) 
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This learning technique leads to a neural network that’s capable of generalizing and 
associating data, because after a successful training a neural network could be able 
to find reasonable solutions to similar problems of the same class that were not 
explicitly trained. This results in a high degree of fault tolerance against noisy input 
data. 

Fault tolerance is strongly related to biological neural networks in which this 
characteristic is very distinct: neurons reorganize themselves or are reorganized by 
external influences. Although this happens or cognitive abilities are not significantly 
affected. Thus the brain (or the biological neural network) is tolerant against 
internal and external errors, for we can often read some “dreadful scrawls” although 
the individual letters are barely readable. 

If we observe our modern technology, then we can easily notice that it’s not 
automatically fault-tolerant. There’s never been a machine that could overcome 
missing a hardware piece, imagine if there’s a laptop without a hard disk controller, 
the audio card would never take over its tasks. So when something is damaged in a 
machine, it’s affected as a whole, while a brain is not. 

At first sight, this distributed system seems pretty adequate and efficient, but no 
system is flawless, a disadvantage of this system is the difficulty of analyzing the 
neural network at first sight (we can’t tell what it knows nor what it does nor where 
its faults lie). Most often we can only transfer knowledge into the network by means 
of a learning procedure, which, besides being hard to manage, might cause errors. 

So to create an artificial neural network which implements a biological one, we need 
to adapt four basic characteristics: 

 Self-organization. 

 Learning capabilities. 

 Generalization capability. 

 Fault tolerance. 
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1.3 A SIMPLE EXAMPLE 

Say we have a robot with eight distance sensors (three on the front left, three on the 
front right and two on the back), two motors and two wheels, each motor controls 
a wheel. 

Each sensor provides a real numeric value at any time, so we are always receiving an 
input from I ∈ R8. 

This robot shall keep on driving until it sees an obstacle that might collide with it. 
Thus our output (halt signal) is binary: H = 𝟎 for “keep on moving” and H = 𝟎 for 
“Stop”. 

Therefore, we need a mapping 

𝒇 ∶ 𝑹𝟖 → 𝑩𝟏 

that applies the input signals to a robot activity. 

There are two ways of realizing this mapping: 

 The classical way. 

 The way of learning. 

The classical way is all about creating a circuit or a computer program which realizes 
the mapping, then we study the sensors and the values they might return for 
different obstacle distances and embed them in our set of rules. Such rules are 
applied in the classic artificial intelligence, and is recommended for when you know 
the exact rules of a mapping algorithm. 

On the other hand, the way of learning is used with those problems that are hard to 
comprehend straightaway. It’s about showing different possible situations to the 
robot, and it shall learn on its own what to do in its “robotic life”. 

 

  

Figure 1: a small 
robot with eight 
sensors and two 

motors. 



PAGE 7 

1.4 THE WAY OF LEARNING IN A SIMPLE DESCRIPTION 

To teach a “neural network” we first treat it as a “black box” (we don’t know its 
structure but just regard its behavior in practice). 

We introduce the robot to its first training samples, which are situations in form of 
simply measured sensor values, we specify whether the robot shall drive on or stop. 
Thus a training sample consists of an exemplary input and a corresponding desired 
output. So how do we transfer this knowledge and the information into the neural 
network?! 

We can teach the samples to a neural network by using a simple learning procedure, 
which is a simple algorithm or a mathematical formula. If we have done everything 
right and chosen good samples, the neural network will generalize from these 
samples and find a universal rule when it has to stop. 

The aforementioned example can be optionally expanded for the purpose of 
direction control for example, it would be possible to control the two motors of the 
robot separately, with the sensor layout unchanged. But in this case we are looking 
for a mapping 

𝒇 ∶ 𝑹𝟖 → 𝑹𝟐  

which gradually control the two motors by means of the sensor inputs and thus 
cannot only, for example, stop the robot but also lets it avoid obstacles. It has 
become more difficult to analytically derive the rules, and de facto a neural network 
would be more appropriate. 

The goal here is not to learn the samples by 
heart but to understand the principle behind 
them: Ideally, the robot should apply the 
neural network in any situation and be able 
to avoid obstacles. So the robot should 
continuously and repeatedly query the 
network while driving in order to 
continuously avoid obstacles. This results in 
a constant cycle: the robot queries the 
network, it will drive in one direction as a 
consequence, which changes the sensors 
values. Again the robot queries the network 
and changes its position, the sensors values 
are changed once again, and so on. It is 
obvious that this system can also be 
adapted to dynamic (changing 
environments, moving obstacles in our 
example…).  

Figure 2: different positions with different sensor 
values as learning samples. 

 

Figure 3: neuron's components.Figure 4: different 
positions with different sensor values as learning 

samples. 
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Chapter 2 

A deeper glance 

 BIOLOGICAL HINTS FIRST 

Before going any deeper into the artificial neural networks, we should have some 
basic information of biological ones, which we will briefly discuss in this part. 

Information gets processed by the vertebrate nervous system, which consists of the 
central nervous system and the peripheral nervous system. 

The peripheral nervous system comprises the nerves that are situated outside the 
brain or the spinal cord. These nerves form a branched and very dense network 
throughout the whole body. 

The central nervous system, however is the “main frame”. It’s the management and 
storing part for all the information received by the sense organs besides controlling 
the inner processes in the body and last but not least, coordinates the motor 
functions of the organism. 

The cerebrum is one of the most important part of the nervous system, it changed 
most during evolution. It is responsible for a lot of operations much of them is 
controlled consciously by the being (such as decision making, problem solving, 
purposeful behaviors, consciousness, emotions, voluntary movements…). 

The cerebellum is located below the cerebrum and is in charge of performing motor 
coordination, maintaining balance, controlling movements and continuously 
correcting errors. For this purpose, the cerebellum has direct sensory information 
about muscle lengths as well as acoustic and visual information. Furthermore, it also 
receives messages about more abstract motor signals coming from the cerebrum. 

The diencephalon (the interbrain) includes the thalamus, which mediates between 
sensory and motor signals and the cerebrum. Particularly it decides which part of 
the information is transferred to the cerebrum, so that especially less important 
sensory perceptions can be suppressed at short notice to avoid overloads. Another 
part of the diencephalon is the hypothalamus, which controls a number of processes 
within the body. The diencephalon in the human circadian rhythm (“internal clock”) 
and the sensation of pain. 
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One last component is the brainstem, which connects the brain with the spinal cord 
and is responsible for many fundamental reflexes, such as the blinking reflex or 
coughing. 

All these components have one thing in common: information processing. This is 
accomplished by huge accumulations of billions of very similar cells; whose 
structure is very simple but which communicate continuously. Neurons are nothing 
more than a switch with information input and output. The switch is activated when 
there are enough stimuli of other neurons hitting the information input. Then, at 
the information output, a pulse is sent to, for example, other neurons. In the 
upcoming text we will discuss these neurons deeper and see how do they act and 
what are they made of. 

Neurons are connected with each other by special connections, the synapses. 
These connections are responsible for transferring signals from a neuron to another. 
There are two types of synapses, electrical and chemical synapses. 

The electrical one is the simpler variant. An electrical signal received by the synapse, 
for example, coming from the presynaptic side, is directly transferred to the 
postsynaptic nucleus of the cell. Thus there’s a direct, strong, unadjustable 
connection between the signal transmitter and the signal receiver. 

On the other side the chemical synapse is the more distinctive variant, in which the 
electrical coupling of source and target doesn’t take place, it’s interrupted by the 
synaptic cleft, which electrically separates the presynaptic side from the 
postsynaptic one. If so, then how does the signal flow? 

The electrical signal is converted into a chemical signal on the presynaptic side of 
the synaptic cleft, a process induced by chemical cues released there (the so-called 

Figure 28: neuron's components. 
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neurotransmitters). These neurotransmitters cross the synaptic cleft and transfer 
the information into the nucleus of the cell, where it is reconverted into the 
electrical information. 

Although they are complex, the chemical synapses have – compared with the 
electrical synapses – utmost advantage: 

 One-way connection. 

 Adjustability. 

Briefly, the signal is processed this way: 

Dendrites receive (collect) all part of information (many electrical signals from 
many sources), then they are processed (accumulated) in the soma and if it exceeds 
a certain value (threshold value), it’s transferred to the next neuron. Outgoing pulses 
are transferred by means of the axon. 

As we have seen, information is processed on every level of the nervous system, and 
then, a proper response happens. 

Now that we have a brief knowledge of how a biological neural network works, we 
can move onto the next part, which is modelling this biological network into an 
artificial one. 
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 THE MODELLING PROCESS 

2.2.1 Basic concepts and definitions 

To make an artificial model of a neural network, we need to implement a few 
elements which are: 

 Vectorial input: the input of technical neurons should consist of many 
components; therefore, it is a vector. In nature a neuron receives pulses of 103 
to 104 other neurons on average. 

 Scalar output: the output of a neuron is a scalar (one component), so several 
scalar outputs form the vectorial input of another neuron. This also means 
that various input components have to be summarized somehow so that one 
component remains. 

 Synapses change input: the inputs in a neural network – both biological 
original and technical adaptation – are weighted, which means they are 
multiplied by a number called weight, so they are preprocessed, if right to 
say. 

 Accumulating the inputs: biologically, inputs are summarized into a pulse, 
while on the technical side this is often realized by the weighted sum. This 
means that after accumulation we continue with one value, a scalar, instead 
of a vector. 

 Non-linear characteristic: the input of a technical neuron is not 
proportional to the output. 

 Adjustable weights: the weights weighing the inputs are variable, similar to 
the chemical process at the synaptic cleft, which adds a great dynamic to the 
network. 

After mentioning these characteristics, we could conclude some simple basic 
specifications of a casually formulated and very simple neuron model: 

It receives a vectorial input 

�⃗⃗�  

with components 𝒙𝒊. These are multiplied by the appropriate weights 𝒘𝒊 and 
accumulated: 

∑𝒘𝒊𝒙𝒊

𝒊

 

This term is called weighted sum. Then the non-linear mapping 𝒇 defines the 
scalar output 𝒚: 
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𝒚 = 𝒇(∑𝒘𝒊𝒙𝒊

𝒊

) 

Time as a concept will be divided to discrete time steps (present time is (𝒕) and the 
next time step is (𝒕 + 𝟏) and the previous is (𝒕 − 𝟏) and anything related to time is 
written this way (𝑶𝒊(𝒕)). These are the basic things we need to know before knowing 

the components of a technical neural network. 

A technical neural network is consisted of simple processing units, neurons, and 
directed, weighted connections between those neurons. The strength of a 
connection (the connecting weight) between two neurons 𝒊 and 𝒋 is referred to as 
𝒘𝒊𝒋. 

A neural network is a sorted triple (𝑵, 𝑽,𝒘) with two sets 𝑵, 𝑽 and a function 𝒘, 
where 𝑵 is the set of neurons and 𝑽 a set {(𝒊, 𝒋) | 𝒊, 𝒋 ∈ ℕ} whose elements are called 
connections between neuron 𝒊 and neuron 𝒋. The function 𝒘 ∶ 𝑽 → ℝ defines the 

weights, where 𝒘((𝒊, 𝒋)), the weight of the connection between neuron 𝒊 and neuron 

𝒋, is shortened to 𝒘𝒊𝒋. Depending on the point of view it is either 0 for connections 

that do not exist in the network. 

So the weights can be implemented in a square weight matrix 𝑾 or, optionally, in a 
weight vector 𝑾 with the row number of the matrix indicating where the connection 
begins, and the column number of the matrix indicating, which neuron is the target. 
This matrix representation is also called Hinton diagram. 

Data are transferred between neurons via connections with the connecting weight 
being either excitatory or inhibitory. 

Data passed to a neuron is processed through three basic functions: 

 Propagation function. 

 Activation function. 

 Output function. 

Take a neuron 𝒋, a lot of neurons will have a 
connection with it, so a lot of neurons pass their 
outputs to it. 

For this neuron the propagation function 
receives the outputs  𝒐𝒊𝟏, … , 𝒐𝒊𝒏 of other 
neurons 𝒊𝟏, … , 𝒊𝒏 (which are connected to 𝒋), 
and transforms them in consideration of the 

connecting weights 𝒘𝒊𝒋 into the network input 

𝒏𝒆𝒕𝒋 that can be further processed by the 

activation function. Thus the network input is 
the result of the propagation function. Figure 29: data processing inside a neuron. 
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Let’s define the propagation function and the network input 

let 𝑰 = {𝒊𝟏, 𝒊𝟐, … , 𝒊𝒏} be the set of neurons, such that ∀ 𝒛 ∈ {𝟏,… , 𝒏} ∶  ∃ 𝒘𝒊𝒛𝒋. 

Then the network input of 𝒋, called 𝒏𝒆𝒕𝒋, is calculated by the propagation function 

𝒇𝒑𝒓𝒐𝒑 as follows: 

𝒏𝒆𝒕𝒋 = 𝒇𝒑𝒓𝒐𝒑((𝒐𝒊𝟏 , … , 𝒐𝒊𝒏), (𝒘𝒊𝟏𝒋, … , 𝒘𝒊𝒏𝒋)) 

Here the weighted sum is very popular: the multiplication of the output of each 
neuron 𝒊 by 𝒘𝒊𝟏𝒋, and the summation of the results: 

𝒏𝒆𝒕𝒋 = ∑(𝒐𝒊. 𝒘𝒊𝟏𝒋)

𝒊∈𝑰

 

Every neuron is, to a certain extent, at all times active (excited). 
the activation state 𝒂𝒋 of a neuron indicates the extent of its activation and is often 

shortly referred to as activation.  

Neurons are activated if their network input exceeds their threshold value 𝜽𝒋, which 

is a value a neuron starts firing when exceeded. 

The activation function (sometimes referred to as transfer function) determines the 
activation of a neuron dependent on network input, previous activation state and 
threshold value as follows: 

𝒂𝒋(𝒕) = 𝒇𝒂𝒄𝒕(𝒏𝒆𝒕𝒋(𝒕), 𝒂𝒋(𝒕 − 𝟏), 𝜽𝒋) 

There are many variants to the activation function: 

 The binary threshold function 
(Heaviside function): only takes two value. 
This function is not differentiable at the 
threshold and for the rest the derivative is 𝟎. 
So propagation is impossible. 

 Fermi function (logistic function): maps 
to the range of (𝟎, 𝟏): 

𝒙

𝟏 + 𝒆−𝒙
 

 Hyperbolic tangent: maps to (−𝟏, 𝟏). 

Figure 30: Heaviside function. 

Figure 32: 
Fermi 

function. 

Figure 31: 
hyperbolic 
tangent. 
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The hyperbolic tangent was replaced with two parabola pieces and two half-lines, 
which made the calculations up to 200 times faster at the price of a slightly smaller 
range of values than the hyperbolic tangent ([−𝟎. 𝟗𝟔𝟎𝟏𝟔, 𝟎. 𝟗𝟔𝟎𝟏𝟔]  instead of 
[−𝟏, 𝟏]). 

The output function calculates the output value of a neuron from its activation state: 

𝒇𝒐𝒖𝒕(𝒂𝒋) = 𝒐𝒋 

this function is often the identity, i.e. the activation 𝒂𝒋 is directly output: 

𝒇𝒐𝒖𝒕(𝒂𝒋) = 𝒂𝒋, so 𝒐𝒋 = 𝒂𝒋 

Both the activation and the output functions are often set globally. 

All these components and functions are organized or adjusted by a so called learning 
strategy, which is an algorithm used to change and thereby train the neural network 
so that the neural network produces a desired output for a given input. 

2.2.2 Network topologies 

It’s now time to get familiar with the usual topologies (designs) of neural networks. 

 Feedforward networks: in this type the neurons are grouped into three 
sections: input layer, hidden layers, output layer (we, from now on, will refer 
to output neurons with Ω. 
Each neuron within a feedforward network has only directed connections to 
the neurons of the next layer, and so on towards the output layer. 
There are some cases, in which, a neuron could skip connecting to one or 
more layers and connect to any other subsequent layer as long as the 
connection is directed towards the output layer. 

 Recurrent networks: these networks have influence on themselves (a 
neuron influences itself by any means or connection). 
These networks do not have explicitly defined input or output neurons. 
within some of these networks neurons are allowed to connect to themselves 
directly, in which case, they are called direct recurrent networks. 
neurons within direct recurrent networks inhibit and strengthen themselves 
to reach their activation limits in the process. 
another type is the indirect recurrent networks, in which, a neuron can 
connect to the preceding layer. 
The last recurrent type is the lateral recurrent network which allows 
connections between neurons of the same layer, so each neuron often 
inhibits the other neurons of the layer and strengthens itself. As a result, the 
strongest neuron becomes active, so, if right to say, it’s a winner-take-all 
scheme. 
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 Completely linked networks: all types of connections are allowed within 
this type except for direct recurrences. Furthermore, connections must be 
symmetric. As a result, every neuron can become an input neuron. 

 

 

2.2.3 Paradigms of learning 

The most significant and interesting characteristic of neural networks is their 
capability to familiarize with problems by means of training and, after sufficient 
training, to be able to solve unknown problems of the same class. This approach is 
referred to as generalization. So a neural network would learn by: 

 Developing new connections. 

 Deleting existing connections. 

 Changing connecting weights. 

Figure 35: feedforward topology. 

Figure 45: direct recurrence topology. 

Figure 34: indirect recurrence 

topology. 

Figure 33: lateral recurrence 
topology. 

Figure 36: completely linked topology. 
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 Changing the threshold values of neurons. 

 Varying one or more of the three neuron functions (activation, propagation, 
and output functions). 

 Developing new neurons. 

 Deleting existing neurons, which is accompanied by deleting existing 
connections. 

We direct the learning of a neural network by a, so called, learning procedure, which 
is a set of rules formulated as an algorithm that can easily be implemented by means 
of a programming language. 

There are three main and essential paradigms (unsupervised, reinforcement and 
supervised learning), and they shall be introduced by presenting the differences 
between their regarding training sets. 

Unsupervised learning is the most plausible method, biologically speaking, but is 
not suitable for all problems. Its training set only consist of input patterns, and the 
network tries by itself to detect similarities and to generate pattern classes. 

In reinforcement learning, the training set consists of input patterns, and after 
completing a sequence, a value is returned to the network indicating whether the 
result was right or wrong and possibly, how right or wrong it was (the stick and 
carrot policy). 

Supervised learning is an extremely effective, and therefore very practicable, 
learning procedure, in which the training set consists of input patterns with their 
corresponding correct results, so that the network can receive a precise error vector. 
This procedure goes like this: 

 Entering the input pattern (activation of input neurons). 

 Forward propagation of the input by the network, output is generated. 

 Comparing the output with the desired output (teaching input). 

 Providing the error vector (difference vector). 

 Corrections of the network are calculated based on the error vector. 

 Corrections are applied. 

There are two main ways of learning, online and offline leaning. Using online 
learning the network learns directly from the errors of each training sample, while 
using offline learning, the network receives several training patterns and the errors 
care accumulated, here, the network learns for all patterns at the same time. 
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An artificial life maybe?! 

Artificial neural networks could be of benefit almost everywhere, because of their 
adaptive design, their characteristics and their ability to learn. But the question to 
be asked is will these networks ever be able to reach the “intelligence” level of our 
human brain?! 

To answer this question, we first need to know the difference between our brain 
and these network’s regarding the tasks they can do. 

Our brain is capable of learning, extremely faster than an artificial neural network 
does, it’s capable of doing a whole bunch of tasks and operations all together at the 
same time, but we as humans do not give them that important notice, for they are 
everyday tasks so we view them as ordinary tasks and operations, some examples 
might speak clearer. 

If you show a flower to a kid, who has never seen one, and tell him it’s a flower, flip 
it upside down for example and ask him what does he see, what would his answer 
be? It will definitely be a flower, on the other hand, do the same with an artificial 
neural network, the flower has been saved to its memory as in the first position, 
when flipped, it is no more a flower to the network, it is nothing recognizable yet 
(it has to see a flower in a lot of positions and a lot of conditions before having the 
ability to “know” what a flower is). 

Our brain has a really high level of multitasking, it does a great number of tasks 
simultaneously, more than any computer or technical hardware or software was 
ever able to, it organizes breathing, heart beating rate, blood pressure, all five 
senses are always activated unless one of their organs is corrupted, so we see and 
listen and smell and taste and touch at the same instance. Our simple movements 
are more complicated than you think it is, for example it takes a good amount of 
time to make a robotic hand that has the same ability to as a humanoid one. 

What we do in our everyday life is much more complicated than we could imagine 
and it is tremendously hard for a computer or an artificial neural network to do. 
Our brain is able to recognize stuff only after seeing them one time, it is able to 
differentiate between similar stuff easily, it is able to multitask more than any 
artificial component. 

Artificial neural networks on the other side, could be able to do some of these 
tasks, but takes much more time to learn them. They are able to predict futuristic 
results based on present and past data, they are able to complete really complex 
calculations and computations within seconds, they are able to recognize 
handwritten characters and words in bad conditions, recognize styles in paintings, 
novels and poems or even mathematical sheets, and after sufficient learning 
amount, they could output other products of the same class with the same style or 
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be given, for example, a document with totally scrambled characters, and return a 
totally readable one with a specific style. 

Artificial neural networks could even learn to master some task, a game for 
example, starting from scratch within a reasonable time. 

Until now, most of the AI related products, including artificial neural networks, 
deliver a massively accurate and efficient experience considering a single or a 
couple of operations no more, never a fully functional product that could 
“understand” but one that “knows” and judges based on its knowledge alone, so 
will we ever be able to create a product that could replace a human at an 
important position, or to be able to invent something at its own level or more 
advanced, or to duplicate itself and organize its “clones”. 

These questions will be left unanswered for a good while, and we have not even get 
close enough to answer or achieve some of them. 

But the evolution technology had seen during the last decades stands proof that 
everything is possible given enough time, so nobody knows when these 
achievements will be reached. 

In my opinion, it is just a matter of time until we would see these achievements 
coming true, and it will not take long. 
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