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Abstract: 

Finding the shortest path between two points or more is a very important problem for every 

programmer and choosing the algorithm which can solve the problem with the faster time is one of the 

most troubles which run across programmers. 

In this search my aim is to find all of the possible cases of the shortest path problems and compare 

between the most used shortest path algorithm to find the most suitable algorithm for each case which 

can give us the correct answer with the best time complexity. 
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1. Introduction: 
If we have a map which shows many cities with the routes between it and we want to go from 

one to another…. If there are few cases we can enumerate all the routes between the two 

points, then add up the distances on each route, and select the shortest. 

But if we have a lot of cases we can’t find it easily, we should use an algorithm which help us to 

find the shortest path and some applications need to find the shortest path and use it (maps 

applications, network routing….), so the programmer of this applications need to write a code 

which find the shortest path depending on shortest path algorithms. 

in competitive programming: shortest path problems are one of the most important side in 

programming contests so every competitive programmer needs to use shortest path 

algorithms. 

2. Inquiry of research: 
Like we saw shortest path problems is very important for competitive programmers and other 

programmers which work on different projects so every programmer needs to solve a shortest 

path problems using one of shortest path algorithms. 

And as we know there is many shortest path algorithms and solving a shortest path problem 

depending on the algorithm that we use. 

So, what is the cases and algorithms for shortest path?? 

And which algorithm can we use on every case and any of them is the better in every case??? 
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3. Graph theory 
Graphs are one of the unifying themes of computer science – 

an abstract representation which describes the organization of 

transportation systems, electrical circuits, human interactions, 

and telecommunication networks. 

Every graph is shown with many vertexes which are 

connected with each other by many edges. 

3.1 Flavors of graphs[1]: 
There are several fundamental properties of graphs which 

impact the choice of data structures used to represent them and algorithms available to analyze 

them. The first step in any graph problem is determining which flavor of graph you are dealing 

with. 

Directed vs undirected: 

A graph G = (V, E) is undirected if edge (x, y) ∈ E implies that (y, x) is also in E. If not, we say 

that the graph is directed. 

As we see in the figure 2 (undirected graph) we can move from (0) to (1) and from (1) to (0) but 

in the directed graph (figure 3) we can move from (0) to (1) but we can’t move from (1) to (0) 

and also. 

 

  

 

 

 

 

 

 

 

weighted vs unweighted: 

In weighted graphs, each edge (or vertex) of G is assigned a numerical value, or weight. Typical 

application-specific edge weights for road networks might be the distance, travel time, or 

maximum capacity between x and y. In unweighted graphs, there is no cost distinction between 

various edges and vertices. 

Figure (1): Simple graph 

Figure (2): undirected graph Figure (3): directed graph 
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The difference between weighted and unweighted graphs becomes particularly apparent in 

finding the shortest path between two vertices. For unweighted graphs, the shortest path must 

have the fewest number of edges, but in the weighted graphs we must use certain algorithm to 

find the shortest path. 

 

 

  

Figure (5):  Weighted graph Figure (4): Unweighted graph 
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3.2 Representations of graphs[1, 2]: 
There are several possible ways to represent 

graphs, the most two standard ways to 

represent a graph G = (V, E) “a graph G with V 

vertices and E edges” is the adjacency lists or 

the adjacency matrix forms, and sometimes the 

edge list form is used (there are a few other 

rare structures). 

The two ways (adjacency lists and adjacency 

matrix) are used in the both directed and 

undirected graphs and used in the both 

weighted and unweighted graphs. 

The Adjacency Matrix: usually in the form of a 

2D array (V×V)1, For an unweighted graph, set 

AdjMat[i][j] to a non-zero value (usually 1) if 

there is an edge between vertex i-j or zero 

otherwise. For a weighted graph, set 

AdjMat[i][j] = weight (i, j) if there is an edge 

between vertex i-j with weight (i, j) or infinite 

(we can define it as INT_MAX) if the two vertex 

isn’t connected.  

An Adjacency Matrix is a good choice if the 

connectivity between two vertices in a small 

dense graph is frequently required. However, it 

is not recommended for large sparse graphs as it 

would require too much space (O (V 2)) and 

there would be many blank (zeros and infinites) 

cells in the 2D array.  

The Adjacency Lists[3]: we have a vector of vector of pairs, storing the list of neighbors of each 

vertex u as ‘edge information’ pairs. Each pair contains two pieces of information, the index of 

the neighboring vertex and the weight of the edge. If the graph is unweighted, simply store the 

weight as 0, 1. The space complexity of Adjacency List is O (V + E) because if there are E 

bidirectional edges in a (simple) graph, this Adjacency List will only store 2E ‘edge information’ 

pairs. As E is usually much smaller than V × (V −1)/2 = O (V 2)—the maximum number of 

edges in a complete (simple) graph, Adjacency Lists are often more space-efficient than 

Adjacency Matrices. 

all of these features make the adjacency list the most common used data structure in the graph 

algorithms. 

                                                           
1 V is the number of the vertices 

Figure (6): Graph “A” 

Table (1): Adjacency Matrix for graph “A” 
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Also, there is many data structure which used to represent a graph but the adjacency list and the 

adjacency matrix forms is the most used especially in the shortest path algorithms. 

Adjacency list for graph A 

0 1 2 3 

1 0 4 _ 

2 0 5 _ 

3 0 4 5 

4 1 3 5 

5 2 3 4 

 

 

  

Table (2): Adjacency list for graph “A” 
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4. Dijkstra algorithm[4, 5]: 
Dijkstra's algorithm is an algorithm for finding the shortest paths from a source node to all other 

nodes in a graph, it was designed and published by E.W. Dijkstra2 in 1959. 

For a given source node in the graph, the algorithm finds the shortest path between that node and 

every other, it can also be used for finding the shortest paths from a single node to a single 

destination node by stopping the algorithm once the shortest path to the destination node has 

been determined. 

Where does it work??? 

 Both directed and undirected graphs. 

 Weighted graph When All edges have nonnegative weights. 

How does it work??? 

we generate a SPT (shortest path tree) with given source as root. We maintain two sets 

(or vectors), one vector contains vertices included in shortest path tree, other vector 

includes vertices not yet included in shortest path tree. At every step of the algorithm, we 

find a vertex which is in the other vector (vector of not yet included) and has minimum 

distance from source. 

4.1 Dijkstra algorithm steps[2]: 
1. Assign to every node a tentative distance value: set it to zero for our initial node and to 

infinity for all other nodes. 

2. Mark all nodes unvisited. Set the initial node as current. Create a vector of the unvisited 

nodes called the unvisited vector consisting of all the nodes. 

3. For the current node, consider all of its unvisited neighbors and calculate their tentative 

distances. For example, if the current node A is marked with a distance of 8, and the edge 

connecting it with a neighbor B has length 2, then the distance to B (through A) will be 8 

+ 2 = 10. 

4. When we are done considering all of the neighbors of the current node, mark the current 

node as visited and remove it from the unvisited set. A visited node will never be checked 

again. 

5. If the destination node has been marked visited (when planning a route between two 

specific nodes) or if the smallest tentative distance among the nodes in the unvisited set is 

infinity (when planning a complete traversal; occurs when there is no connection between 

the initial node and remaining unvisited nodes), then stop. The algorithm has finished. 

6. Select the unvisited node that is marked with the smallest tentative distance, and set it as 

the new "current node" then go back to step 3. 

4.2 Dijkstra algorithm Pseudo code: 

                                                           
2 Edsger Wybe Dijkstra: A Dutch computer scientist (1930\2002) 

1: void Dijkstra (Graph, source): 
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4.3 Dijkstra algorithm example: 
if we have this graph (graph B) the input will be:  

 

 

 

 

 

And when we compile the Dijkstra code with this input and 

we determine (0) as a source index we will have this output 

(shortest path from zero to all other nodes):  

 

 

 

 

 

 

 

4.4 Run time analysis for Dijkstra algorithm: 
There is many implementation for Dijkstra but the most used implementation has O(V2) run 

time like the given code below and with this runtime Dijkstra can solve shortest path problems 

without negative weights. 

2: for each vertex v in Graph: // Initialization 

3: dist[v] := infinity // initial distance from source to vertex v 

4: dist[source] := 0 // Distance from source to source 

5: Q := the set of all nodes in Graph // the nodes in the graph 

6: while Q is not empty: // main loop 

7: u := node in Q with smallest dist[ ]  

8: remove u from Q  

9: for each neighbor v of u: // where v has not yet been removed from  

10: path := dist[u] + dist_between (u, v)  

11: if path < dist[v] // if there is shorter path 

12: dist[v] := path  

0 13 8 3 ∞ 

∞ 0 ∞ ∞ 7 

∞ 2 0 6 5 

∞ ∞ ∞ 0 3 

∞ 4 1 7 0 

Figure (7): Graph B 

Figure (8): the output of Graph B 

Table (3) Adjacency Matrix for graph “B” 
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5. Bellman Ford algorithm[6] 
The Bellman–Ford algorithm is a dynamic algorithm that computes shortest paths from a single 

source vertex to all of the other vertices, it is slower than Dijkstra in the same problem but it can 

work on negative weights (some of the edge weights are negative numbers). 

The algorithm was published by Richard Bellman and Lester Ford in 1956 and 1958. 

Where does it work??? 

 Directed and undirected graph. 

 Weighted graph (negative and nonnegative weights). 

 Can detect negative weight cycle. 

negative weight cycle: 

A negative weight cycle is a cycle with weights that sum to a negative number it means 

that every time the algorithm runs into the cycle it detects a shorter path. 

How does it work??? 

Like Dijkstra's Shortest Path, the Bellman-Ford is based on the relaxation technique, in 

which an approximation to the correct distance is gradually replaced by more accurate 

values until eventually reaching the optimum solution. 

5.1 Bellman Ford algorithm steps[3]: 
1. Assign to every node a tentative distance value: set it to zero for our initial node 

and to infinity for all other nodes. 

2. Now for every edge (u-v) in the graph check if the distance to the v is less than 

the sum of the distance to u and the weight of the edge if it is true update the 

distance to v, where the number of the vertex is V we repeat this operation V-1 

times. 

3. The third step check if there is a negative weight cycle, the second step guarantees 

shortest distances if graph doesn’t contain negative weight cycle. If we iterate 

through all edges one more time and get a shorter path for any vertex, then there 

is a negative weight cycle. 

 

Pseudo code: 

   // Step 1: initialize graph 

   for each vertex v in vertices: 

       distance[v] := inf          //  all vertices have a weight of infinity 

       predecessor[v] := null      // And a null predecessor 

    

distance[source] := 0           // Except for the Source, where the Weight is 

zero 

    

   // Step 2: relax edges repeatedly 
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   for i from 1 to size(vertices)-1: 

       for each edge (u, v) with weight w in edges: 

           if distance[u] + w < distance[v]: 

               distance[v] := distance[u] + w 

               predecessor[v] := u 

 

   // Step 3: check for negative-weight cycles 

   for each edge (u, v) with weight w in edges: 

       if distance[u] + w < distance[v]: 

           error "Graph contains a negative-weight cycle" 

   return distance[], predecessor[] 

5.2 Bellman-Ford algorithm Example: 
If we have this directed and weighted graph (graph B) with negative weights the input (Edge list) 

will be: 

from To weight 

0 1 2 

0 2 -2 

0 3 3 

1 4 -1 

2 1 4 

2 3 6 

2 4 4 

3 4 3 

4 1 4 

4 2 3 

4 3 1 

 

And the output will be: 

 

 

 

 

 

 

5.3 Runtime analysis for Bellman-Ford algorithm: 
Bellman-Ford algorithm is very similar to Dijkstra but it is slower (time complexity for Bellman-

Ford is o(VE) when V is the number of vertex and E is the number of edges) but Bellman-Ford 

distinguished that it is more versatile which can work on more cases like negative weights. 

 

Figure (9): Graph C 

Figure (10): The output of graph C 

Table (4): Edge list for graph “C” 
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6. Floyd Warshall algorithm[7] 
The Floyd-Warshall algorithm is a dynamic algorithm for solving the All pairs shortest path 

algorithm it means it finds the shortest distance between all vertices in directed weighted graph 

with positive or negative weights. 

If the weights are nonnegative for all edges, then we can use Dijkstra’s single source shortest 

path algorithm for all vertices to solve the problem (because Dijkstra is faster than Floyd-

Warshall in positive weights) but if we have a negative weight we should use Floyd-Warshall 

(because it is also faster than Bellman-Ford in all pairs shortest path algorithm). 

The algorithm was published in 1962 by Robert Floyd and also by Stephen Warshall in 1962 and 

it is essentially the same as algorithm previously published by Bernard Roy in 1959 so it is also 

known as Floyd’s algorithm, the Roy–Warshall algorithm, the Roy–Floyd algorithm. 

Where does it work??? 

 To find all pairs shortest path in both directed and undirected graph. 

 Weighted graphs with positive and negative weights. 

 It can detect negative weight cycle. 

How does it work??? 

We initialize the solution matrix same as the input graph matrix as a first step. Then we 

update the solution matrix by considering all vertices as an intermediate vertex. The idea 

is to one by one pick all vertices and update all shortest paths which include the picked 

vertex as an intermediate vertex in the shortest path. When we pick vertex number k as an 

intermediate vertex, we already have considered vertices [1 ... k-1] as intermediate 

vertices. For every pair (i, j) of source and destination vertices respectively, there are two 

possible cases. 

1) k is not an intermediate vertex in shortest path from i to j. We keep the value of 

dist[i][j] as it is. 

2) k is an intermediate vertex in shortest path from i to j. We update the value of dist[i][j] 

as dist[i][k] + dist[k][j]. 

 

Pseudo code: 

1. for i=1 to n do 

2.   for j to n do 

3.     dist (i, j) = weight (i, j) 

4. for k= 1 to n do 

5.   for i=1 to n do 

6.     for j= 1 to n do 
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7.        if (dist (i, k) + dist (k, j) < dist (i, j)) then 

8.          dist (i, j) = dist (i, k) + dist (k, j) 

6.1 Runtime analysis for Floyd Warshall algorithm: 
Like we see there is 3 “for” statements (i,j,k) so The time complexity for Floyd Warshall is o(V3) 

when V is the number of vertex in the graph, and we know that the time complexity of Johnson 

algorithm is o(V2+VE) so in small graphs V2+VE is lower than V3 so Johnson algorithm is faster in 

the sparse ( small ) graphs and Floyd Warshall is faster in the large graphs. 
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7. Johnson algorithm[3] 
Johnson algorithm is the algorithm that find shortest paths between every pair of vertices in a 

given weighted directed Graph and weights may be negative, Donald B. Johnson published it in 

1977.   as we see applying Dijkstra single source shortest path algorithm for every vertex is the 

fast way but if we have negative weight edges Dijkstra doesn’t work. 

Johnson algorithm is depending on Bellman-Ford and Dijkstra algorithm, the idea of this 

algorithm is to re-weight all edges and make them all positive (using Bellman-Ford), then apply 

Dijkstra’s algorithm for every vertex. 

Where does it work??? 

 Solve all pairs shortest path problems in Both directed an undirected Graph. 

 Works on negative weights. 

 Used in sparse graph because Floyd-Warshall algorithm is faster with O(V3) in large 

graphs. 

7.1 Johnson algorithm steps: 
1. First, a new node s is added to the graph, connected by zero-weight edges to each of the 

other nodes. 

2. Second, the Bellman–Ford algorithm is used, starting from the new vertex s, to find for 

each vertex v the minimum weight h(v) of a path from s to v. If this step detects a 

negative cycle, the algorithm is terminated. 

3. Next the edges of the original graph are reweighted using the values computed by the 

Bellman–Ford algorithm: an edge from u to v, having length w (u, v), is given the new 

length w (u, v) + h(u) − h(v). 

4. Finally, q is removed, and Dijkstra's algorithm is used to find the shortest paths from 

each node s to every other vertex in the reweighted graph. 

7.2 Johnson algorithm Runtime analysis: 
The main steps in algorithm are Bellman Ford Algorithm called once and Dijkstra called 

V times. Time complexity of Bellman Ford is O(VE) and time complexity of Dijkstra is 

O(V2). So, overall time complexity is O (V2 + VE). 
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8. Results and conclusion: 
As we saw shortest path algorithms is very important for a lot of problems such as: web graph 

and networks routing. 

As a result of his research: 

1. we find that the best algorithms to find the shortest path in unweighted and undirected 

graph is BFS or DFS in o(V+E) time complexity. 

2. To find the single source shortest path without the negative weights Dijkstra’s algorithm 

is the best way with O(V2) or O((V+E) log(V)) in other implementations. 

3. To find the single source shortest path with the negative weights Bellman-Ford 

algorithm is the best way with O(V+E) time complexity. 

4. To find All pairs shortest path in the sparse algorithm the best algorithm is Johnson 

algorithm with O(V2+VE) and in large graphs Floyd-Warshall is the best with O(V3) 

time complexity. 

5. All of the mentioned algorithms before can work with negative weights but Dijkstra’s 

algorithms cannot work with negative weights or detect negative weights cycle.   
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9. Codes: 
 

 

 

  
 

#include <iostream> 

#include <vector> 

using namespace std; 

const int inf = 1<<30; 

int main () 

{ 

    cout<<"please insert the number of nodes : "; 

    int n,s,x; 

    cin>>n; 

    vector <vector<int> > adj; 

    adj.resize(n); 

    for (int i=0;i<n;i++) 

        adj[i].resize(n); 

    cout<<"now insert the adjacency matrix : 

"<<endl; 

    for (int i=0;i<n;i++) 

        for (int j=0;j<n;j++) 

            cin>>adj[i][j]; 

    cout<<"insert your source index : "; 

    cin>>s; 

 vector<bool> vis(n); 

 vector<int> dis(n); 

 for(int i=0;i<n;i++) 

  dis[i]=inf; 

 dis[s]=0; 

Dijkstra code “1” 

 

for(int i=0;i<n;i++) 

            { 

 int cur=-1; 

 for(int j=0;j<n;j++) 

 { 

 if(vis[j]) continue; 

 if(cur==-1 || dis[j]<dis[cur]) 

                 cur=j; 

  } 

 vis[cur]=true; 

                         for(int j=0;j<n;j++) 

  { 

          int path = dis[cur] + adj[cur][j]; 

                        if(path < dis[j]) 

         dis[j]=path; 

  }      } 

    cout<<"Do you want to know the shortest path                         

     to all nodes !!! : ";     

    string f; 

    cin>>f; 

    if (f=="NO") 

    { 

        cout<<"please insert the index of the node 

that"; 

        cout<<"you want to know the shortest path 

to  it : "; 

 Dijkstra code “2” 
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 cin>>x;        

cout<<"the shortest path from the node "<<s<<" to the node "; 

        cout<<x<<" is "<<dis[x]; 

    } 

    else 

    { 

        for (int i=0;i<n;i++) 

            cout<<"the shortest path from the node "<<s<<" to the node "; 

            cout<<i<<" is "<<dis[i]<<endl; 

    } 

    return 0; 

} 

Dijkstra code “3” 
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#include <iostream> 

#include <vector> 

#include <limits> 

using namespace std; 

int main() 

{ 

    int v,e,source,src=0,dest=1,wg=2; 

    cout<<"enter the number of vertex\n"; 

    cin>>v; 

    cout<<"enter the number of edges\n"; 

    cin>>e; 

    vector <vector<int> > graph; 

    graph.resize(e); 

    for (int i=0;i<e;i++) 

        graph[i].resize(3); 

    cout<<"now please insert: src dest weight : for 

every edge\n"; 

    for (int i=0;i<e;i++) 

        for (int j=0;j<3;j++) 

            cin>>graph[i][j]; 

    cout<<"now insert your source index\n"; 

    cin>>source; 

    int dist [v]; 

    for (int i=0;i<v;i++) 

        dist[i]=INT_MAX; 

    dist[source]=0; 

Bellman-Ford “1” 

 

    for (int i=1;i<=v-1;i++) 

    { 

        for (int j=0;j<e;j++) 

        { 

            int u = graph[j][src]; 

            int v = graph[j][dest]; 

            int weight = graph[j][wg]; 

            if (dist[u] != INT_MAX && dist[u] + weight 

< dist[v]) 

                dist[v] = dist[u] + weight; 

        } 

    } 

    bool con=1; 

    for (int i=0;i<e;i++) 

    { 

        int u = graph[i][src]; 

        int v = graph[i][dest]; 

        int weight = graph[i][wg]; 

        if (dist[u] != INT_MAX && dist[u] + weight < 

dist[v]) 

            { 

                cout<<"Graph contains negative weight 

cycle"; 

                con=0; 

            } 

    } 

Bellman-Ford “2” 
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    if (con) 

        for (int i=0;i<v;i++) 

            cout<<"the shortest path from "<<source<<" to "<<i<<"  =  "<<dist[i]<<"\n"; 

    return 0; 

} 

Bellman-Ford “3” 
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