
12/1/2017

The 2038’s Bug
A research in informatics

By: Majd Alia

Syrian Arab Republic

Ministry of Education

The National Center for Distinguished

Supervised by: Amjad Taha

INDEX

Title Page

INTRODUCTION…………………….…….………………………1

MACHINE LANGUAGE…….……………………………………2

UNIX OS………………………………………………………………4

BUGS…………………………………………………………………..7

The Y2K bug…………………………………………………………8

The year 2038’s bug………………………………..…………10

Conclusion…………………………………………………………12

References…………………………………………………………13

Figures References…………………………………………….13

Introduction
We are living in an accelerating era where thinking, calculating, and planning ahead

is the key to success. After the huge advance in technology we invented all kind of

equipment to help the humanity to have an easier life. So we came up with

machines to do some of our work for us. And the most common machine in our

daily life is the computer. Therefore, hardware manufactures and software

programmers keep on tracking every flow or problem that might come across their

work to prevent any fatal problem from occurring. In this research I will study a bug

that faces one of the most common software in machines operating, the UNIX

system. I’ll study the problem, discuss the effects, and predict the amount of

collateral damage according to older similar problem.

In order to have a better understanding of the problem I will explain some

information about:

1- The language of machines to get to the core of the problem

2- The concept of bugs to differentiate between this type of problems and

other types.
3- The UNIX OS as it is the main element in this research.
4- A previous similar bug, the millennium bug as reference to predict the

upcoming effects of the year 2038 bug.
AND the main question is will this bug’s effects exceed our

expectations, will it have massive damage upon humanity or

will it be limited to miner problems….

1

Machine language:

From the dawn of humanity, we needed ways to communicate with each other so,

to fill our need we invented languages. As humans the machine needs to

communicate with its hardware parts and people as well so the binary system

appeared as a convenient language to communicate with the circuits and with

other interfaces that can process human languages.

Why Binary?

Computers use binary numbers because they have circuits which

are either on or off, which gives them two states to work from to

make calculations and run processes. The two-digit, or base 2,

number system is much easier for the computer to process with

the circuits they have. The binary numbers have values for each

space in a number, just like regular numbers with the ones, tens

and hundreds places.1

 In binary numbers, instead of each number place being

multiplied by ten, they are multiplied by two. This allows long

strings of number to still be translated into standard numbers and

letters. Eight binary number strings are the most useful and most

used set of binary numbers. The eight-number sets allow the

computer to process numbers from zero to 255. These eight

numbers are also the smallest binary sets that give the right

amount of number options to represent letters. This is similar to

how the binary numbers are used to represent pictures. Pictures

are made up of pixels, which are digital representations of the

picture. The pixels coincide with binary codes, which tell the

computer how much red, blue or green is needed to create the

color on the screen. Each pixel is normally represented by up to

three bytes, or three of the eight digit binary codes.1

1.https://www.reference.com/technology/computers-use-binary-numbers-153b6c083395d831 2/1/17

2

Figure 1 some decimal numbers
and their equivalences in binary

https://www.reference.com/technology/computers-use-binary-numbers-153b6c083395d831

HOW TO CONVERT FROM DECIMAL TO BINARY:

When converting from decimal to binary the mathematical way is simplest. Start

with the decimal number you want to convert and start dividing that number by

two, keeping track of the remainder after each complete division. Every time you

divide by two, you will divide evenly (0) or get a remainder of one (1). Following the

pattern to the end, you will get a binary number. Write the remainders in the order

they were generated from right to left and the result is the equivalent binary value.

Example: Convert decimal 44 to binary

1. Divide:

 44/2=22 reminder = 0

 22/2=11 reminder = 0

 11/2=05 reminder = 1

 05/2=02 reminder = 1

 02/2=01 reminder = 0

 01/2=00 reminder = 1

2. Reverse: reverse the order of reminders

The bits, in the order they were generated is 001101 Reversing the order of

bits we get 101100. Properly padded with leading zeroes to fill out one byte,

we get 00101100.2

__
2.www.inetdaemon.com/tutorials/basic_concepts/number_systems/binary/conversion.shtml2/1/17

3

http://www.inetdaemon.com/tutorials/basic_concepts/number_systems/binary/conversion.shtml

UNIX Operating System:

Unix (officially UNIX) is a registered trademark of The Open Group that refers to a

family of computer operating systems and tools conforming to The Open Group

Base Specification, Issue 7 (also known as POSIX.1-2008 or IEEE Std 1003.1 - 2008).3

Proprietary Unix operating systems (and Unix-like variants) run on a wide variety of
digital architectures, and are commonly used on web servers, mainframes, and
supercomputers. In recent years, smartphones, tablets, and personal computers
running versions or variants of Unix have become increasingly popular.3

The original Unix operating system was developed at AT&T's Bell Labs research
center in 1969. In the 1970s and 1980s, AT&T licensed Unix to third-party vendors,
leading to the development of several Unix variants, including Berkeley Unix, HP-
UX, AIX, and Microsoft's Xenix. In 1993, AT&T sold the rights to the Unix operating
system to Novell, Inc., which a few years later sold the Unix trademark to the
consortium that eventually became The Open Group.3

Unix was developed using a high-level programming language (C) instead of
platform-specific assembly language, enabling its portability across multiple
computer platforms. Unix also was developed as a self-contained software system,
comprising the operating system, development environment, utilities,
documentation, and modifiable source code. These key factors led to widespread
use and further development in commercial settings, and helped Unix and its
variants become an important teaching and learning tool used in academic
settings.3

There are many different versions of UNIX, although they share common
similarities. The most popular varieties of UNIX are Sun Solaris, GNU/Linux, and
MacOS X.4

The UNIX operating system is made up of three parts: 1.the kernel 2.the shell and
3.the applications. 4

3. https://kb.iu.edu/d/agat 2/1/17

4. http://www.ee.surrey.ac.uk/Teaching/Unix/unixintro.html 2/1/17

4

https://kb.iu.edu/d/agat%202/1/17
http://www.ee.surrey.ac.uk/Teaching/Unix/unixintro.html

Kernel: The kernel is the
master control program of
the operating system,
handling memory
management, system calls,
and other low-level
functions common to most
programs, and providing
drivers for controlling
hardware.3

Kernel: The kernel is the
master control program of
the operating system,
handling memory
management, system calls,
and other low-level
functions common to most
programs, and providing drivers for controlling hardware.3

Why UNIX is more common?

According to (adventurer.org) there are two main features in which UNIX surpasses

Other OSs like windows:

1.UNIX is more secure than Windows:

Unix was designed from the start to be a multi-user computing environment. The

mechanisms for granting and denying access to files and system resources have

been built into the software from the beginning.

Microsoft Windows was built to provide an entire computer to only one person,

and file access control is an ad-hoc bolt-on which has never really worked

effectively.

5.www.adventurer.org.nz/?page=writing/essays/2012-08-01_Why_we_use_Unix.txt 6/1/17

5

Figure 2 A diagram of the UNIX OS layers

http://www.adventurer.org.nz/?page=writing/essays/2012-08-01_Why_we_use_Unix.txt

2.UNIX offers more control over your system:

When running Unix, you can have confidence that your computers are not doing

things without your knowledge, like transmitting information back to corporate

headquarters. Microsoft software, on the other hand, has a history of cryptic

operations and has been found to report back to Microsoft on what other software

you are running on your computer, violating your privacy and compromising your

business information.5

Unix is completely transparent. All system and configuration files are readable, and

the source code for all systems software is available. There is no limit to the depth

of knowledge about the system you can develop, if you have the time and

inclination to do so.5

Side-Note:

Operating systems that behave like Unix systems and provide similar utilities, but do
not conform to Unix specification or are not licensed by The Open Group, are commonly
known as Unix-like systems. These include a wide variety of Linux distributions (e.g.,
Red Hat Enterprise Linux, Ubuntu, and CentOS) and several descendants of the
Berkeley Software Distribution operating system (e.g., FreeBSD, OpenBSD, and
NetBSD).3

6

BUGS:

In 1946, when Hopper was released from active duty, she joined the Harvard
Faculty at the Computation Laboratory where she continued her work on the Mark
II and Mark III. Operators traced an error in the Mark II to a moth trapped in a relay,
coining the term bug. This bug was carefully removed and taped to the log book.
Stemming from the first bug, today we call errors or glitches in a program a bug.6

A software bug is an error, flaw, failure or fault in a computer
program or system that causes it to produce an incorrect or unexpected result, or
to behave in unintended ways. Most bugs arise from mistakes and errors made in
either a program's source code or its design, or in components and operating
systems used by such programs. A few are caused by compilers producing incorrect
code. A program that contains a large number of bugs, and/or bugs that seriously
interfere with its functionality, is said to be buggy (defective).6

Bugs trigger errors that may have ripple effects. Bugs may have subtle effects or
cause the program to crash or freeze the computer. Others qualify as security
bugs and might, for example, enable a malicious user to bypass access controls in
order to obtain unauthorized privileges.

In 2002, a study commissioned by the US Department of Commerce's National
Institute of Standards and Technology concluded that "software bugs, or errors, are
so prevalent and so detrimental that they cost the US economy an estimated
$59 billion annually, or about 0.6 percent of the gross domestic product".7

Therefore, economist and administrations encourage programmers to check and
predict the bugs in their codes to resolve them before anything bad occurs.

6. http://ei.cs.vt.edu/~history/Hopper.Danis.html 6/1/17

7.https://web.archive.org/web/20090610052743/http://www.nist.gov/public_affairs/releases/n02-

10.htm 22/1/17

7

http://ei.cs.vt.edu/~history/Hopper.Danis.html
https://web.archive.org/web/20090610052743/http:/www.nist.gov/public_affairs/releases/n02-10.htm
https://web.archive.org/web/20090610052743/http:/www.nist.gov/public_affairs/releases/n02-10.htm

The millennium bug aka the Y2K bug:

The Y2K bug was a
computer flaw, or bug,
that may have caused
problems when dealing
with dates beyond
December 31, 1999. The
flaw, faced by computer
programmers and users
all over the world on
January 1, 2000, is also
known as the
"millennium bug." (The
letter K, which stands for
kilo (a unit of 1000), is
commonly used to
represent the number
1,000. So, Y2K stands for Year 2000.) Many skeptics believe it was barely a problem
at all.

When complicated computer programs were being written during the 1960s
through the 1980s, computer engineers used a two-digit code for the year. The
"19" was left out. Instead of a date reading 1970, it read 70. Engineers shortened
the date because data storage in computers was costly and took up a lot of space.

As the year 2000 approached, computer programmers realized that computers
might not interpret 00 as 2000, but as 1900. Activities that were programmed on a
daily or yearly basis would be damaged or flawed. As December 31, 1999, turned
into January 1, 2000, computers might interpret December 31, 1999, turning into
January 1, 1900.8

Banks, which calculate interest rates on a daily basis, faced real problems. Interest
rates are the amount of money a lender, such as a bank, charges a customer, such
as an individual or business, for a loan. Instead of the rate of interest for one day,
the computer would calculate a rate of interest for minus almost 100 years!

8. http://www.nationalgeographic.org/encyclopedia/Y2K-bug 9/1/17

8

Figure 3 Super computers infected by the Y2K bug

http://www.nationalgeographic.org/encyclopedia/Y2K-bug

Centers of technology, such as power
plants, were also threatened by
the Y2K bug. Power plants depend on
routine computer maintenance for
safety checks, such as water
pressure or radiation levels. Not
having the correct date would throw
off these calculations and possibly put
nearby residents at risk.

Transportation also depends on the
correct time and date. Airlines in
particular were put at risk, as
computers with records of all
scheduled flights would be threatened after all, there were very few airline flights
in 1900.

Y2K was both a software and hardware problem. Software refers to the electronic
programs used to tell the computer what to do. Hardware is the machinery of the
computer itself. Software and hardware companies raced to fix the bug and
provided "Y2K compliant" programs to help. The simplest solution was the best:
The date was simply expanded to a four-digit number. Governments, especially in
the United States and the United Kingdom, worked to address the problem.8

In the end, there were very few problems. A nuclear energy facility in Ishikawa,
Japan, had some of its radiation equipment fail, but backup facilities ensured there
was no threat to the public. The U.S. detected missile launches in Russia and
attributed that to the Y2K bug. But the missile launches were planned ahead of
time as part of Russia’s conflict in its republic of Chechnya. There was no computer
malfunction.

Countries such as Italy, Russia, and South Korea had done little to prepare for Y2K.
They had no more technological problems than those countries, like the U.S., that
spent millions of dollars to combat the problem.

Due to the lack of results, many people dismissed the Y2K bug as a hoax or an end-
of-the-world cult.8

9

Figure 4 An electronic sign displaying the year incorrectly as 1900
on 3 January 2000 in France

The year 2038’s bug:

Most programs written in the C programming language are relatively immune to

the Y2K problem, but suffer instead from the Year 2038 problem. This problem

arises because most C programs use a library of routines called the standard time

library. This library establishes a standard 4-byte format for the storage of time

values, and also provides a number of functions for converting, displaying and

calculating time values.9

Y2038 refers to an issue related to the way time is handled by computers. Time is
often represented as the number of seconds since Jan 1, 1970. Whenever a 32-bit
signed integer is used for this, the maximum value that can be represented is +/-
~68 years, 19 days from the epoch, which corresponds to Jan 19, 2038. What
happens after that is system dependent, but generally not good. A computer may
act as if its time got reset to Dec 1901, or possibly to the epoch of Jan 1, 1970. It
may give unexpected results or crash.10

Basically, any software that uses time in any way may potentially have Y2038 issues.
While only a small percentage of each software component is typically affected,
this is still enough to cause many problems. Embedded systems with 32-bit cores
and computers running 32-bit versions of Linux and Windows and are particularly
at risk.10

From the previous information some might say that only by switching to 64-bit
cores and 64-bit OS versions we can solve the problem but unfortunately that’s
not even half the truth.

9. http://computer.howstuffworks.com/question75.htm 11/1/17

10. https://y2038.com/faq/ 11/1/17

10

http://computer.howstuffworks.com/question75.htm
https://y2038.com/faq/

Although virtually all new servers, desktop, and laptop computers being sold today
have 64-bit hardware and operating systems. Some high-end cell phones and
tablets also have 64-bit hardware and operating systems. However, the hardware
and operating system are only part of the Y2038 issue. There are many other
technical areas where Y2038 issues may exist, including application software,
peripheral hardware, device drivers, file systems, databases, communication
protocols, web content, and embedded systems. Computers with 64-bit hardware
and operating systems are capable of running 32-bit software which may not be
Y2038-compliant. Even 64-bit software may not be Y2038-compliant.10

It is also important to consider that most of the billions of embedded systems today
and likely trillions that will exist by 2038 will still be using 32-bit (or less) CPUs due
to factors such as power usage and the higher cost and complexity of 64-bit CPUs.
Many embedded systems will not experience Y2038 issues, but a significant portion
of them may.9

This problem is somewhat easier to fix than the Y2K problem on mainframes,
fortunately. Well-written programs can simply be recompiled with a new version
of the library that uses, for example, 8-byte values for the storage format. This is
possible because the library encapsulates the whole time activity with its own time
types and functions (unlike most mainframe programs, which did not standardize
their date formats or calculations). So the Year 2038 problem should not be nearly
as hard to fix as the Y2K problem was.9

11

Conclusion:
Considering the data mentioned above I believe it’s fair to say that although this

bug is still far to occur, communities learned their lesson from previous problems

and instead of sitting still waiting for the disaster to happen like in the year 2000,

they Started to seek solutions and answers for what might face them in the future.

We don’t know the exact effects of this bug, but taking from what happened

before, and taking in account all the insurances of related personals we can survive

this problem with minor damages. Many organizations have started working

towards solving this problem years ago and some of those already managed to get

rid of those problems. We are prepared for most of the scenarios and with some

effort there won’t probably be any damages.

12

References

1. https://www.reference.com/technology

2. https://www.inetdaemon.com

3. https://kb.iu.edu

4. http://www.ee.surrey.ac.uk

5. https://www.adventurer.org.nz

6. http://ei.cs.vt.edu

7. https://web.archive.org

8. http://www.nationalgeographic.org

9. http://computer.howstuffworks.com

10. https://y2038.com/faq

Figures References

Figure 1 some decimal numbers and their equivalences in binary 3

www.binaryhexconverter.com

Figure 2 A diagram of the UNIX OS layers ... 6

http://www.technozed.com

Figure 3 Super computers infected by the Y2K bug 9

http://www.nationalgeographic.org

Figure 4 An electronic sign displaying the year incorrectly as 1900 on 3 January 2000 in France 10

www.wikipedia.org

13

https://www.reference.com/technology/computers-use-binary-numbers-153b6c083395d831
https://www.inetdaemon.com/
https://kb.iu.edu/
http://www.ee.surrey.ac.uk/
https://www.adventurer.org.nz/
http://ei.cs.vt.edu/
https://web.archive.org/
http://www.nationalgeographic.org/
http://computer.howstuffworks.com/
https://y2038.com/faq
file:///C:/Users/majd/Desktop/research/The%202038's%20bug.docx%23_Toc476111914
http://www.binaryhexconverter.com/
file:///C:/Users/majd/Desktop/research/The%202038's%20bug.docx%23_Toc476111915
file:///C:/Users/majd/Desktop/research/The%202038's%20bug.docx%23_Toc476111916
http://www.nationalgeographic.org/
file:///C:/Users/majd/Desktop/research/The%202038's%20bug.docx%23_Toc476111917

